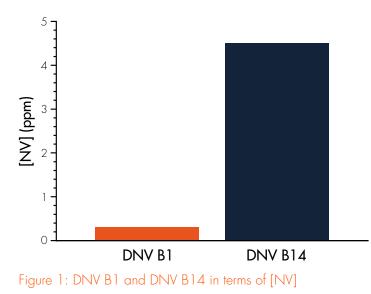

DNV[™] Series DNV[™] B1 and DNV[™] B14 Unlocking next generation quantum technologies

Perfectly imperfect diamonds, uniquely designed for quantum applications

DNV[™] Series DNV[™] B1 and DNV[™] B14

Advancing diamond quantum technologies


As part of our diamond portfolio grown by chemical vapour deposition (CVD), Element Six offers two quantum grades of single-crystal diamond that contain deliberate and controlled levels of nitrogen-vacancy (NV) centres, fabricated using our patented processes.

The resulting diamond NV (DNV) centres provide researchers with a unique solid-state platform with spin qubits that can be initialised and read out with long qubit lifetimes at room temperature. These properties stem from diamond's structure and strong covalent bonds.

DNV[™] B1 and DNV[™] B14

Element Six's DNV[™] B1 and DNV[™] B14 products are ideal for those interested in employing NV ensembles for DC & AC magnetic field sensing, masers, RF detection, gyroscopes and quantum demonstrators.

These grades of diamond are designed to provide the end-user with a uniform distribution of NV spin centres, in a small chip that may be readily integrated into a quantum device or employed in research experiments.

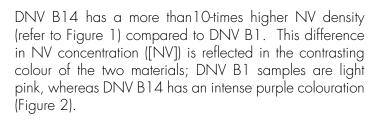


Figure 2: DNV B1 (left) and DNV B14 (right) CVD diamond samples

Due to the differing levels of [NV] and residual [N] the two types of material have varying spin characteristics. The typical inhomogeneous transverse coherence time (T_2^*) is of order 1 µs for DNV B1, which is reduced to 0.5 µs for DNV B14 (see Figure 3). Hahn echo measurements measure a factor of 20 higher T_2 in DNV B1 samples (of order 200 µs vs 10 µs).

These values of [NV], T_2 and T_2 * mean the two materials lend themselves to different sensing modalities/applications. For example, the greatly increased Hahn-echo T_2 for DNV B1 means it is suited to AC magnetometry, whereas the increased [NV] in DNV B14 and only moderate reduction in T_2 * results in DNV B14 being applicable for DC-sensing magnetometry experiments.

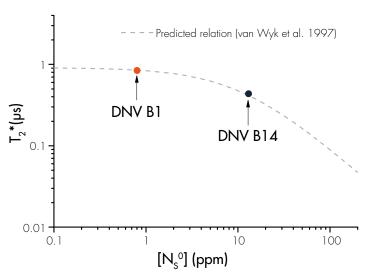


Figure 3: Spin coherence vs. nitrogen concentration (van Wyk et al. (1997). J. Phys. D: Appl. Phys. 30, 1790)

The choice of material also depends on device-design considerations, such as the amount of laser power used or how the microwaves are delivered, due to the differing densities of NV defects.

DNV[™] Series DNV[™] B1 and DNV[™] B14

Specifications and tolerances	Values	
Crystallography	Major {100} polished faces	
Crystallographic orientation (miscut)	< +/-3°	
Typical dimensions	3 mm x 3 mm x 0.5 mm	
Edge features	< 0.2 mm	
Roughness, Ra	< 10 nm	
¹³ C	1.1%	
Quantum properties	DNV B1	DNV B14
Typical $[N_s^{o}]$ (before treatment)	800 ppb	13 ppm
Typical [NV]	300 ppb	4.5 ppm
Typical spin coherence time T_2^*	l µs	0.5 µs
Typical spin coherence time T_2	200 µs	10 µs

Further reading

- 1. Markham, M. and Twitchen, D. (2020). The diamond quantum revolution. Physics World 33, 39
- 2. Zhang, H. et al. (2018). Little bits of diamond: Optically detected magnetic resonance of nitrogen-vacancy centers. American Journal of Physics 86, 225. https://doi.org/10.1119/1.5023389

E technologies@e6.com T +44 1344 638 200 W e6.com © Element Six, 2021

Element Six, the E6 logo and DNV are trade marks of the Element Six Group.